On-line Neural Network Compensator for Constrained Robot Manipulators

نویسندگان

  • Shenghai Hu
  • H. Krishnan
چکیده

In this paper, a new neural network controller for the constrained robot manipulators in task space is presented. The neural network will be used for adaptive compensation of the structured and unstructured uncertainties. The controller consisted of a model-based term and a neural network on-line adaptive compensation term. It is shown that the neural network adaptive compensation is universally able to cope with totally different classes of system uncertainties. Novel adaptive learning algorithms for tuning the weights of neural network are proposed. A suitable error filtered signal for training the neural network can be easily obtained from the controller design without using any model knowledge of the robot manipulator itself The closed-loop system with neural network adaptation on line is guaranteed to be stable in the Lyapunov sense. Detailed simulation results are given to show the effectiveness of the proposed controller.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive RBF network control for robot manipulators

TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...

متن کامل

A Neural-Network Compensator with Fuzzy Robusti cation Terms for Improved Design of Adaptive Control of Robot Manipulators

A sum radial-basis-function neural-network (NN) compensator with computed-torque control and novel weight-tuning algorithms is proposed to improve tracking performance and to account for structured/unstructured uncertainties of robot manipulators. The proposed weight-tuning algorithms do not require the initial NN weights to be small. The bounds of NN weights are guaranteed to be convergent in ...

متن کامل

Neural Network Controller for Constrained Robot Manipulators

In this paper, a neural network controller for constrained robot manipulators is presented. A feedforward neural network is used to adaptively compensate for the uncertainties in the robot dynamics. Training signals are proposed for the feed-forward neural network controller. The neural network weights are tuned on-line, with no off-line learning phase required. It is shown that the controller ...

متن کامل

Using a Neural Network instead of IKM in 2R Planar Robot to follow rectangular path

Abstract— An educational platform is presented here for the beginner students in the Simulation and Artificial Intelligence sciences. It provides with a start point of building and simulation of the manipulators, especially of 2R planar Robot. It also displays a method to replace the inverse kinematic model (IKM) of the Robot with a simpler one, by using a Multi-Layer Perceptron Neural Network ...

متن کامل

Saturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study

In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000